Copied to
clipboard

G = C42.308D4order 128 = 27

4th non-split extension by C42 of D4 acting via D4/C4=C2

p-group, metabelian, nilpotent (class 3), monomial

Aliases: C42.308D4, C42.722C23, (C4×D8)⋊7C2, (C4×Q16)⋊7C2, C42(C87D4), C43(C88D4), C88D457C2, (C4×SD16)⋊34C2, C8.56(C4○D4), C87D4.12C2, C42(C8.5Q8), C8.5Q827C2, C42(C8.18D4), C4.136(C4○D8), C42(C8.12D4), C8.12D428C2, C8.18D442C2, C4⋊C4.107C23, (C2×C8).599C23, (C2×C4).366C24, (C4×C8).432C22, (C4×D4).88C22, C22.3(C4○D8), C23.394(C2×D4), (C22×C4).568D4, (C4×Q8).85C22, (C2×D8).132C22, (C2×D4).122C23, (C2×Q8).110C23, C4.Q8.162C22, C2.D8.181C22, C4⋊D4.171C22, (C22×C8).570C22, (C2×Q16).128C22, C22.626(C22×D4), C22⋊Q8.176C22, D4⋊C4.146C22, (C2×C42).1135C22, (C22×C4).1571C23, C23.36C235C2, Q8⋊C4.138C22, (C2×SD16).150C22, C4.4D4.143C22, C42.C2.120C22, C42(C42.78C22), C42.78C2233C2, C2.63(C22.26C24), (C2×C4×C8)⋊31C2, C4.51(C2×C4○D4), C2.35(C2×C4○D8), (C2×C4).699(C2×D4), SmallGroup(128,1900)

Series: Derived Chief Lower central Upper central Jennings

C1C2×C4 — C42.308D4
C1C2C4C2×C4C42C4×C8C2×C4×C8 — C42.308D4
C1C2C2×C4 — C42.308D4
C1C2×C4C2×C42 — C42.308D4
C1C2C2C2×C4 — C42.308D4

Generators and relations for C42.308D4
 G = < a,b,c,d | a4=b4=1, c4=d2=a2, ab=ba, ac=ca, dad-1=ab2, bc=cb, bd=db, dcd-1=c3 >

Subgroups: 340 in 190 conjugacy classes, 92 normal (44 characteristic)
C1, C2, C2, C4, C4, C4, C22, C22, C22, C8, C8, C2×C4, C2×C4, D4, Q8, C23, C23, C42, C42, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, C2×C8, D8, SD16, Q16, C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C4×C8, D4⋊C4, Q8⋊C4, C4.Q8, C2.D8, C2×C42, C42⋊C2, C4×D4, C4×D4, C4×Q8, C4⋊D4, C22⋊Q8, C22.D4, C4.4D4, C42.C2, C422C2, C22×C8, C2×D8, C2×SD16, C2×Q16, C2×C4×C8, C4×D8, C4×SD16, C4×Q16, C88D4, C87D4, C8.18D4, C42.78C22, C8.12D4, C8.5Q8, C23.36C23, C42.308D4
Quotients: C1, C2, C22, D4, C23, C2×D4, C4○D4, C24, C4○D8, C22×D4, C2×C4○D4, C22.26C24, C2×C4○D8, C42.308D4

Smallest permutation representation of C42.308D4
On 64 points
Generators in S64
(1 53 5 49)(2 54 6 50)(3 55 7 51)(4 56 8 52)(9 45 13 41)(10 46 14 42)(11 47 15 43)(12 48 16 44)(17 37 21 33)(18 38 22 34)(19 39 23 35)(20 40 24 36)(25 61 29 57)(26 62 30 58)(27 63 31 59)(28 64 32 60)
(1 39 31 10)(2 40 32 11)(3 33 25 12)(4 34 26 13)(5 35 27 14)(6 36 28 15)(7 37 29 16)(8 38 30 9)(17 61 48 55)(18 62 41 56)(19 63 42 49)(20 64 43 50)(21 57 44 51)(22 58 45 52)(23 59 46 53)(24 60 47 54)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 44 5 48)(2 47 6 43)(3 42 7 46)(4 45 8 41)(9 62 13 58)(10 57 14 61)(11 60 15 64)(12 63 16 59)(17 31 21 27)(18 26 22 30)(19 29 23 25)(20 32 24 28)(33 49 37 53)(34 52 38 56)(35 55 39 51)(36 50 40 54)

G:=sub<Sym(64)| (1,53,5,49)(2,54,6,50)(3,55,7,51)(4,56,8,52)(9,45,13,41)(10,46,14,42)(11,47,15,43)(12,48,16,44)(17,37,21,33)(18,38,22,34)(19,39,23,35)(20,40,24,36)(25,61,29,57)(26,62,30,58)(27,63,31,59)(28,64,32,60), (1,39,31,10)(2,40,32,11)(3,33,25,12)(4,34,26,13)(5,35,27,14)(6,36,28,15)(7,37,29,16)(8,38,30,9)(17,61,48,55)(18,62,41,56)(19,63,42,49)(20,64,43,50)(21,57,44,51)(22,58,45,52)(23,59,46,53)(24,60,47,54), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,44,5,48)(2,47,6,43)(3,42,7,46)(4,45,8,41)(9,62,13,58)(10,57,14,61)(11,60,15,64)(12,63,16,59)(17,31,21,27)(18,26,22,30)(19,29,23,25)(20,32,24,28)(33,49,37,53)(34,52,38,56)(35,55,39,51)(36,50,40,54)>;

G:=Group( (1,53,5,49)(2,54,6,50)(3,55,7,51)(4,56,8,52)(9,45,13,41)(10,46,14,42)(11,47,15,43)(12,48,16,44)(17,37,21,33)(18,38,22,34)(19,39,23,35)(20,40,24,36)(25,61,29,57)(26,62,30,58)(27,63,31,59)(28,64,32,60), (1,39,31,10)(2,40,32,11)(3,33,25,12)(4,34,26,13)(5,35,27,14)(6,36,28,15)(7,37,29,16)(8,38,30,9)(17,61,48,55)(18,62,41,56)(19,63,42,49)(20,64,43,50)(21,57,44,51)(22,58,45,52)(23,59,46,53)(24,60,47,54), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,44,5,48)(2,47,6,43)(3,42,7,46)(4,45,8,41)(9,62,13,58)(10,57,14,61)(11,60,15,64)(12,63,16,59)(17,31,21,27)(18,26,22,30)(19,29,23,25)(20,32,24,28)(33,49,37,53)(34,52,38,56)(35,55,39,51)(36,50,40,54) );

G=PermutationGroup([[(1,53,5,49),(2,54,6,50),(3,55,7,51),(4,56,8,52),(9,45,13,41),(10,46,14,42),(11,47,15,43),(12,48,16,44),(17,37,21,33),(18,38,22,34),(19,39,23,35),(20,40,24,36),(25,61,29,57),(26,62,30,58),(27,63,31,59),(28,64,32,60)], [(1,39,31,10),(2,40,32,11),(3,33,25,12),(4,34,26,13),(5,35,27,14),(6,36,28,15),(7,37,29,16),(8,38,30,9),(17,61,48,55),(18,62,41,56),(19,63,42,49),(20,64,43,50),(21,57,44,51),(22,58,45,52),(23,59,46,53),(24,60,47,54)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,44,5,48),(2,47,6,43),(3,42,7,46),(4,45,8,41),(9,62,13,58),(10,57,14,61),(11,60,15,64),(12,63,16,59),(17,31,21,27),(18,26,22,30),(19,29,23,25),(20,32,24,28),(33,49,37,53),(34,52,38,56),(35,55,39,51),(36,50,40,54)]])

44 conjugacy classes

class 1 2A2B2C2D2E2F2G4A4B4C4D4E···4N4O···4T8A···8P
order1222222244444···44···48···8
size1111228811112···28···82···2

44 irreducible representations

dim11111111111122222
type++++++++++++++
imageC1C2C2C2C2C2C2C2C2C2C2C2D4D4C4○D4C4○D8C4○D8
kernelC42.308D4C2×C4×C8C4×D8C4×SD16C4×Q16C88D4C87D4C8.18D4C42.78C22C8.12D4C8.5Q8C23.36C23C42C22×C4C8C4C22
# reps11121211211222888

Matrix representation of C42.308D4 in GL4(𝔽17) generated by

4900
41300
0001
00160
,
13000
01300
00130
00013
,
11500
11600
00512
0055
,
16200
0100
0040
00013
G:=sub<GL(4,GF(17))| [4,4,0,0,9,13,0,0,0,0,0,16,0,0,1,0],[13,0,0,0,0,13,0,0,0,0,13,0,0,0,0,13],[1,1,0,0,15,16,0,0,0,0,5,5,0,0,12,5],[16,0,0,0,2,1,0,0,0,0,4,0,0,0,0,13] >;

C42.308D4 in GAP, Magma, Sage, TeX

C_4^2._{308}D_4
% in TeX

G:=Group("C4^2.308D4");
// GroupNames label

G:=SmallGroup(128,1900);
// by ID

G=gap.SmallGroup(128,1900);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,-2,253,456,758,184,80,4037,124]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=1,c^4=d^2=a^2,a*b=b*a,a*c=c*a,d*a*d^-1=a*b^2,b*c=c*b,b*d=d*b,d*c*d^-1=c^3>;
// generators/relations

׿
×
𝔽